CHARACTERIZATION OF SUMMABILITY POINTS OF NÖRLUND METHODS

KARL-GOSWIN GROSSE-ERDMANN AND KARIN STADTMÜLLER

ABSTRACT. By a theorem of F. Leja any regular Nörlund method (N, p) sums a given power series f at most at countably many points outside its disc of convergence. This result was recently extended to a class of non-regular Nörlund methods by K. Stadtmüller. In this paper we obtain a more detailed picture showing how possible points of summability and the value of summation depend on p and f.

1. Introduction

Let $p=(p_n)_{n=0,1,\dots}$ be a sequence of complex numbers such that $P_n:=\sum_{\nu=0}^n p_\nu\neq 0$ for all $n\in\mathbb{N}_0$. This sequence generates a Nörlund method (N,p), where the transformation matrix $A=(\alpha_{n\nu})_{n,\nu=0,1,\dots}$ is given by

$$\alpha_{n\nu} = \frac{p_{n-\nu}}{P_n}$$
 if $0 \le \nu \le n$, $\alpha_{n\nu} = 0$ if $\nu > n$ $(n \in \mathbb{N}_0)$.

Thus, the (N, p)-transforms of a sequence (s_n) are given by

$$\sigma_n = \sum_{\nu=0}^n p_{n-\nu} \, s_{\nu} / P_n \qquad (n \in \mathbb{N}_0) \,,$$

and (s_n) is (N, p)-summable to the value σ , $\sigma = (N, p)$ - $\lim s_n$, if $\sigma_n \to \sigma$ as $n \to \infty$.

Throughout this paper let

(1)
$$f(z) = \sum_{k=0}^{\infty} a_k z^k \quad \text{with} \quad \overline{\lim}_{k \to \infty} |a_k|^{1/k} = \frac{1}{R} \quad (0 \le R \le \infty)$$

be a power series with partial sums $s_n(z) = \sum_{k=0}^n a_k z^k$. Its (N, p)-transforms are given by

$$\sigma_n(z) = \sum_{\nu=0}^n \frac{p_{n-\nu}}{P_n} s_{\nu}(z) = \sum_{\nu=0}^n \frac{P_{n-\nu}}{P_n} a_{\nu} z^{\nu},$$

where the first equality represents the so-called sequence-sequence form and the second the series-sequence form. For Nörlund methods both transforms

Received by the editors November 3, 1993; originally communicated to the *Proceedings of the AMS* by Andrew Bruckner.

¹⁹⁹¹ Mathematics Subject Classification. Primary 30B10, 40G05; Secondary 40D09.

Key words and phrases. Power series, matrix transforms, Nörlund methods, summability points.

are equivalent. If $\sigma_n(z_0) \to \sigma(z_0)$ $(n \to \infty)$, we say that the power series f is (N, p)-summable at z_0 and write (N, p)- $\sum_{k=0}^{\infty} a_k z_0^k = \sigma(z_0)$; compact (= locally uniform) summability in a domain in $\mathbb C$ is defined accordingly.

It was shown by F. Leja [5] that a regular Nörlund method (N, p) sums any given power series (1) with R > 0 at most at countably many points outside the disc of convergence, and these points can only accumulate on |z| = R. This result was recently generalized for non-regular Nörlund methods by the second author [6]. In this paper we will deal with the problem of how these points of (N, p)-summability can be characterized and whether it is possible to prescribe summability points. Also, it was pointed out in [2] that the original proofs of Leja's and Stadtmüller's theorem contain a gap. As a by-product of our results we obtain a new and short proof of that theorem that eliminates the gap.

2. Some properties of (N, p)-methods

From the theorem of Silverman and Toeplitz (see, e.g., [4, p. 43]) we get that a Nörlund method (N, p) is regular if and only if

$$\lim_{n\to\infty}\frac{p_n}{P_n}=0\quad\text{and}\quad\sup_n\frac{1}{|P_n|}\sum_{\nu=0}^n|p_\nu|<\infty.$$

Now let (N, p) be an arbitrary Nörlund method. Then the numbers

$$\frac{p_n}{P_n}$$
 $(n \in \mathbb{N}_0)$

have a strong influence on the behaviour of the method as is apparent, e.g., in [6]. We first note the following result; its simple proof is omitted.

Lemma 2.1. Let (N, p) be a Nörlund method, and let $\alpha \in \mathbb{C}$. Then the following assertions are equivalent:

- (i) $\frac{p_n}{P_n} \to \alpha$ as $n \to \infty$;
- (ii) $\frac{\hat{p}_{n-\nu}^n}{P_n} \to \alpha (1-\alpha)^{\nu}$ as $n \to \infty$, for each $\nu \in \mathbb{N}_0$;
- (iii) $\frac{\hat{P}_{n-1}^{n}}{P_n} \to 1 \alpha$ as $n \to \infty$;

(iv)
$$\frac{P_{n-\nu}^{n}}{P_{n}} \to (1-\alpha)^{\nu}$$
 as $n \to \infty$, for each $\nu \in \mathbb{N}_0$.

Remark 2.2. If the sequence (p_n/P_n) is divergent, then the (N, p)-method sums no power series (1) with $a_1 \neq 0$ compactly in any neighbourhood of $z_0 = 0$. For if we assume that

$$\sigma_n(z) = \sum_{\nu=0}^n \frac{P_{n-\nu}}{P_n} a_{\nu} z^{\nu}$$

converges compactly in a neighbourhood of 0, then $(P_{n-1} a_1/P_n)$ and consequently (P_{n-1}/P_n) converges, leading to a contradiction on account of Lemma 2.1.

Thus, in this paper we will only consider Nörlund methods (N, p) with the property that (p_n/P_n) is convergent.

If (N, p) is a regular method, hence $\lim_{n\to\infty} p_n/P_n = 0$, and f is any power series (1) with R > 0, then f is compactly (N, p)-summable in |z| < R to the limit function f. If $\lim_{n\to\infty} p_n/P_n = \alpha$ is arbitrary, we have:

Theorem A. Let (N, p) be a Nörlund method and $\alpha \in \mathbb{C}$. Then the following two statements are equivalent:

- (i) $\lim_{n\to\infty} \frac{p_n}{P_n} = \alpha$; (ii) if f is a power series (1) with R > 0, then f is compactly (N, p)summable in $|z| < R/|1-\alpha|$ to the limit function $f((1-\alpha)z)$.

For a proof see [6, Theorem 5]. There the limit function σ was given as

$$\sigma(z) = f(z) + \sum_{\nu=0}^{\infty} \alpha (1 - \alpha)^{\nu} \{ s_{\nu}(z) - f(z) \} = f(z) - \sum_{\nu=0}^{\infty} \alpha (1 - \alpha)^{\nu} \sum_{\mu=\nu+1}^{\infty} a_{\mu} z^{\mu}$$

for small values of z. By uniform convergence we obtain

$$\sigma(z) = f(z) - \sum_{\mu=1}^{\infty} \left(\alpha \sum_{\nu=0}^{\mu-1} (1-\alpha)^{\nu} \right) a_{\mu} z^{\mu} = \sum_{\mu=0}^{\infty} a_{\mu} ((1-\alpha)z)^{\mu} = f((1-\alpha)z).$$

Since f is analytic in |z| < R, $f((1-\alpha)z)$ is analytic for $|z| < R/|1-\alpha|$, and by the identity theorem for holomorphic functions we get that $\sigma(z) =$ $f((1-\alpha)z)$ in $|z| < R/|1-\alpha|$.

In the case of $\alpha = 0$ the theorem was obtained by Agnew [1, Theorem 5] for the equivalent series-sequence transform.

In the case of $\alpha = 1$ Theorem A says: If (N, p) is a Nörlund method with $\lim_{n\to\infty} p_n/P_n = 1$, then each power series $f(z) = \sum_{k=0}^{\infty} a_k z^k$ with R > 0 is compactly (N, p)-summable in \mathbb{C} to the value $f(0) = a_0$.

Thus from now on we may assume that $\lim_{n\to\infty} p_n/P_n \neq 1$.

In our further investigations we will need the following property of summability methods that is a generalization of left-translativity.

Definition 2.3. Let $\lambda \in \mathbb{C}$. A summability method A is called λ -left-translative if $A-\lim_{n\to\infty} s_n = \sigma$ implies that $A-\lim_{n\to\infty} s_n' = \lambda \sigma$, where $s_0' = 0$ and $s'_n = s_{n-1}$ for $n \in \mathbb{N}$.

Theorem 2.4. Any Nörlund method (N, p) with $\lim_{n\to\infty} p_n/P_n = \alpha$ is $(1-\alpha)$ left-translative.

Proof. Let (s_n) be a sequence with (N, p)- $\lim_{n\to\infty} s_n = \sigma$. Then for the (N, p)-transforms of (s'_n) with $s'_0 = 0$ and $s'_n = s_{n-1}$ $(n \in \mathbb{N})$ we obtain with Lemma 2.1

$$\frac{1}{P_n} \sum_{\nu=0}^n p_{n-\nu} s_{\nu}' = \frac{1}{P_n} \sum_{\nu=0}^{n-1} p_{n-(\nu+1)} s_{\nu} = \frac{P_{n-1}}{P_n} \left(\frac{1}{P_{n-1}} \sum_{\nu=0}^{n-1} p_{n-1-\nu} s_{\nu} \right) \to (1-\alpha) \sigma$$

as $n \to \infty$.

We note the following result for general λ -left-translative methods.

Theorem 2.5. Let A be a λ -left-translative summability method, f a power series (1), and Q a polynomial. If A sums f at $z_0 \in \mathbb{C}$ to the value σ , then it sums the (formal) power series of Qf about 0 at z_0 to the value $Q(\lambda z_0)\sigma$.

Proof. We prove the case Q(z) = z; by induction on the degree of Q and by the linearity of A the result follows for arbitrary polynomials Q.

By assumption we have $A - \sum_{k=0}^{\infty} a_k z_0^k = \sigma$ and hence $A - \sum_{k=0}^{\infty} a_k z_0^{k+1} = z_0 \sigma$ by the linearity of A. Defining $s_n = \sum_{k=0}^n a_k z_0^{k+1}$ and $s_0' = 0$, $s_n' = s_{n-1}$ for $n \in \mathbb{N}$, we have $s_n' = \sum_{k=1}^n a_{k-1} z_0^k$ $(n \in \mathbb{N}_0)$. Since A is λ -left-translative, we obtain

$$A - \lim_{n \to \infty} s'_n = \lambda \cdot A - \lim_{n \to \infty} s_n = \lambda z_0 \sigma.$$

But s'_n is also the *n*-th partial sum at z_0 of the power series of zf(z) about 0. \square

Vermes [7] has obtained the corresponding result for regular left-translative series-sequence methods.

3. Necessary conditions for summability and Leja's theorem

If (N, p) is a Nörlund method, then we associate to it the power series

$$p(w) = \sum_{k=0}^{\infty} p_k w^k$$
 and $P(w) = \sum_{k=0}^{\infty} P_k w^k$.

A short calculation shows that formally we have p(w) = (1 - w)P(w). If now $\lim_{n\to\infty} p_n/P_n = \alpha$, then the radius of convergence of P is $|1-\alpha|$ by Lemma 2.1, and hence p and P are holomorphic functions in $|w| < |1-\alpha|$.

Lemma 3.1. Let (N, p) be a Nörlund method, (s_n) a sequence, and (σ_n) its (N, p)-transform. Then we have formally

$$P(w) \cdot \sum_{k=0}^{\infty} u_k w^k = \sum_{k=0}^{\infty} P_k \sigma_k w^k,$$

where $s_n = \sum_{k=0}^n u_k$ for $n \in \mathbb{N}_0$.

Proof. Since, for $n \in \mathbb{N}_0$,

$$\sigma_n = \frac{1}{P_n} \sum_{\nu=0}^n p_{n-\nu} s_{\nu} = \frac{1}{P_n} \sum_{\nu=0}^n p_{n-\nu} \sum_{k=0}^{\nu} u_k = \frac{1}{P_n} \sum_{\nu=0}^n P_{n-\nu} u_{\nu},$$

we have

$$\begin{split} \sum_{k=0}^{\infty} P_k \sigma_k w^k &= \sum_{k=0}^{\infty} \left(\sum_{\nu=0}^k P_{k-\nu} u_{\nu} \right) w^k \\ &= \sum_{k=0}^{\infty} P_k w^k \cdot \sum_{k=0}^{\infty} u_k w^k = P(w) \cdot \sum_{k=0}^{\infty} u_k w^k. \quad \Box \end{split}$$

Our first main result is:

Theorem 3.2. Let (N, p) be a Nörlund method with $\lim_{n\to\infty} p_n/P_n = \alpha \neq 1$. If (N, p) sums a power series $f(z) = \sum_{k=0}^{\infty} a_k z^k$ at a point $z_0 \neq 0$, then:

- (i) f has a positive radius of convergence R,
- (ii) f has a meromorphic continuation into $|z| < |(1-\alpha)z_0|$, and
- (iii) f has a pole ζ with $|\zeta| < |(1 \alpha)z_0|$ only if $\omega := \zeta/z_0$ is a zero of P and the order of the pole ζ is not greater than the order of the zero ω .

Proof. If (σ_n) is the (N, p)-transform of $\sum_{k=0}^{\infty} a_k z_0^k$, then by Lemma 3.1, setting $u_k = a_k z_0^k$, we get $P(w) \cdot \sum_{k=0}^{\infty} a_k (z_0 w)^k = \sum_{k=0}^{\infty} P_k \sigma_k w^k$, hence

$$P(w) \cdot f(z_0 w) = \sum_{k=0}^{\infty} P_k \sigma_k w^k.$$

Since, by the remark preceding Lemma 3.1, P is holomorphic in $|w| < |1 - \alpha|$; and since (σ_n) is convergent, we see that $P(w) f(z_0 w)$ is holomorphic in $|w| < |1 - \alpha|$. Now consider $g(z) := P(z/z_0) f(z)$. Then g is holomorphic in $|z| < |(1 - \alpha)z_0|$, which implies (ii) and (iii). And (i) follows since $P(0) \neq 0$. \square

Remark 3.3. In Theorem 3.2 it suffices to assume that the (N, p)-transform (σ_n) of the power series f at z_0 satisfies $\overline{\lim}_{n\to\infty} |\sigma_n|^{1/n} \le 1$, as the proof shows.

We define for convenience:

Definition 3.4. Let f be a power series (1). Then the number

 $R_m := \sup\{r > 0 : f \text{ is holomorphic at } 0 \text{ and meromorphic in } |z| < r\}$

(with $\sup \emptyset = 0$) is called the radius of meromorphy of f.

From Theorem 3.2 we get immediately:

Corollary 3.5. Let (N, p) be a Nörlund method with $\lim_{n\to\infty} p_n/P_n = \alpha \neq 1$ and f a power series (1). Then:

- (i) The method (N, p) does not sum f at any point z with $|z| > R_m/|1-\alpha|$.
- (ii) If P has no zeros in $|w| < |1 \alpha|$, then (N, p) does not sum f at any point z with $|z| > R/|1 \alpha|$.

In the particular case of regular Nörlund methods, when $\alpha = 0$, assertion (ii) was already noted by Leja [5]. It applies in particular to the Cesàro methods C_{α} ($\alpha \ge 0$). See also Bouligand [3].

Theorem 3.2 also leads to a new and short proof of Leja's theorem and its generalization due to the second author.

Theorem 3.6 [6, Theorem 8]. Let (N, p) be a Nörlund method with

$$\lim_{n\to\infty} p_n/P_n = \alpha \neq 1$$

and f a power series (1). Then for each $\varepsilon > 0$ the method (N, p) sums f at most at finitely many points z with $|z| > R/|1 - \alpha| + \varepsilon$.

Proof. By Corollary 3.5(i) we may assume that $R_m > R > 0$. Hence there exists a pole ζ_0 of f with $|\zeta_0| = R$. Now let $\varepsilon > 0$. If z is a summability point with

 $|z| > R/|1 - \alpha| + \varepsilon$, then we have $|\zeta_0| = R < |(1 - \alpha)z|$, so that by Theorem 3.2 there is a zero ω of P with $\omega = \zeta_0/z$. Hence

(2)
$$|\omega| < \frac{R}{R/|1-\alpha|+\varepsilon} = \frac{|1-\alpha|}{1+\varepsilon|1-\alpha|/R}.$$

Since P is holomorphic in $|w|<|1-\alpha|$, it has only finitely many zeros ω satisfying (2). Hence there can be only finitely many summability points z with $|z|>R/|1-\alpha|+\varepsilon$. \square

Remark 3.7. In fact, by Remark 3.3 we have the following stronger result: For every $\varepsilon > 0$ there can be at most finitely many points z with $|z| > R/|1 - \alpha| + \varepsilon$ for which the (N, p)-transform (σ_n) of the power series f at z satisfies $\overline{\lim}_{n \to \infty} |\sigma_n|^{1/n} \le 1$. This corresponds to a recent result of Borwein and Jakimovski [2] for general summability methods.

By Theorem A we know that the (N, p)-transforms of a power series (1) are compactly convergent in $|z| < R/|1-\alpha|$ to the limit function $f((1-\alpha)z)$. The next theorem tells us that if, more generally, z is a summability point with $|z| < R_m/|1-\alpha|$, then the (N, p)-sum is also $f((1-\alpha)z)$.

Theorem 3.8. Let (N, p) be a Nörlund method with $\lim_{n\to\infty} p_n/P_n = \alpha \neq 1$ and f a power series (1) with R > 0. If (N, p) sums f at a point z_0 with $|z_0| < R_m/|1 - \alpha|$, then $(1 - \alpha)z_0$ is no pole of f and $(N, p) - \sum_{k=0}^{\infty} a_k z_0^k = f((1 - \alpha)z_0)$.

Proof. Since $|(1-\alpha)z_0| < R_m$, there is a polynomial Q such that g = Qf is holomorphic in $|z| \le |(1-\alpha)z_0|$.

(a) We assume that $(1-\alpha)z_0$ is a pole of f. Then we can choose Q so that $g((1-\alpha)z_0) \neq 0$. Now, if $g(z) = \sum_{k=0}^{\infty} b_k z^k$, then Theorem A implies that

$$(N, p) - \sum_{k=0}^{\infty} b_k z_0^k = g((1-\alpha)z_0).$$

On the other hand, from the $(1 - \alpha)$ -left-translativity of (N, p) (see Theorem 2.4) we get by Theorem 2.5

$$(N, p) - \sum_{k=0}^{\infty} b_k z_0^k = Q((1-\alpha)z_0)\sigma,$$

where $\sigma = (N, p) - \sum_{k=0}^{\infty} a_k z_0^k$. Hence $Q((1-\alpha)z_0)\sigma = g((1-\alpha)z_0) \neq 0$. This implies that $Q((1-\alpha)z_0) \neq 0$, which contradicts the assumption that f has a pole at $(1-\alpha)z_0$.

(b) Now, since $(1-\alpha)z_0$ cannot be a pole of f, we can choose Q so that $Q((1-\alpha)z_0) \neq 0$. Then similar conclusions as in (a) lead to

$$Q((1-\alpha)z_0)\sigma = g((1-\alpha)z_0) = Q((1-\alpha)z_0)f((1-\alpha)z_0),$$

hence

$$(N,p)-\sum_{k=0}^{\infty}a_kz_0^k=\sigma=f((1-\alpha)z_0).\quad \Box$$

4. CHARACTERIZATION OF SUMMABILITY POINTS

We have seen that if (N,p) is a Nörlund method with $\lim_{n\to\infty} p_n/P_n = \alpha \neq 1$ and $f(z) = \sum_{k=0}^{\infty} a_k z^k$ is a power series with $0 < R < R_m$, then one has compact summability for $|z| < R/|1 - \alpha|$ and no summability for $|z| > R_m/|1 - \alpha|$. In this section we want to characterize the points z with $R/|1 - \alpha| \leq |z| < R_m/|1 - \alpha|$ at which summability takes place.

Lemma 4.1. Let (P_n) be any sequence of complex numbers such that $P_n \neq 0$ for almost all n and $\lim_{n\to\infty} P_{n-1}/P_n = \beta \neq 0$. Let w_0 be a point with $0 < |w_0| < |\beta|$ and $\sum_{k=0}^{\infty} P_k w_0^k = 0$. Define a sequence (Q_n) by

$$\sum_{k=0}^{\infty} Q_k w^k = \frac{1}{1 - w/w_0} \sum_{k=0}^{\infty} P_k w^k.$$

Then $Q_n \neq 0$ for sufficiently large n, $\lim_{n\to\infty} Q_{n-1}/Q_n = \beta$ and $\lim_{n\to\infty} Q_n/P_n$ exists.

Proof. Since, in a neighbourhood of 0,

$$\sum_{k=0}^{\infty} Q_k w^k = \sum_{k=0}^{\infty} \left(\frac{w}{w_0} \right)^k \sum_{k=0}^{\infty} P_k w^k = \sum_{k=0}^{\infty} \left(\sum_{\nu=0}^k \frac{P_{\nu}}{w_0^{k-\nu}} \right) w^k ,$$

we have for $n \in \mathbb{N}_0$

$$Q_{n} = \frac{1}{w_{0}^{n}} \sum_{k=0}^{n} P_{k} w_{0}^{k} = \frac{1}{w_{0}^{n}} \sum_{k=0}^{\infty} P_{k} w_{0}^{k} - \frac{1}{w_{0}^{n}} \sum_{k=n+1}^{\infty} P_{k} w_{0}^{k}$$
$$= -\frac{1}{w_{0}^{n}} \sum_{k=n+1}^{\infty} P_{k} w_{0}^{k} = -\sum_{k=0}^{\infty} P_{n+k+1} w_{0}^{k+1}.$$

Hence

$$\frac{Q_n}{P_n} = -\sum_{k=0}^{\infty} \frac{P_{n+k+1}}{P_n} \, w_0^{k+1}$$

holds for sufficiently large n. We put $\varphi_k(n) = P_{n+k+1} \, w_0^{k+1}/P_n$ for these n. Then we have $\lim_{n\to\infty} \varphi_k(n) = w_0^{k+1}/\beta^{k+1}$ for $k\in\mathbb{N}_0$ by Lemma 2.1, and one verifies that for a fixed r, $|w_0|/|\beta| < r < 1$, there is some M>0 such that $|\varphi_k(n)| \leq Mr^k$ for all k, n. Hence the Weierstrass M-test implies that

$$\frac{Q_n}{P_n} \to -\sum_{k=0}^{\infty} \frac{w_0^{k+1}}{\beta^{k+1}} \neq 0$$

as $n \to \infty$. Thus we have $Q_n \neq 0$ for sufficiently large n and

$$\frac{Q_{n-1}}{Q_n} = \frac{Q_{n-1}}{P_{n-1}} \frac{P_{n-1}}{P_n} \frac{P_n}{Q_n} \to \beta$$

as $n \to \infty$. \square

Lemma 4.2. Let (N, p) be a Nörlund method with $\lim_{n\to\infty} p_n/P_n = \alpha \neq 1$. Let $N \in \mathbb{N}$ and $0 < |w_0| < |1 - \alpha|$. If P has a zero of order $M \geq N$ at ω_0 , then

(N, p) sums the power series

$$f(z) = \sum_{k=0}^{\infty} b_k z^k = \frac{1}{(1-z)^N}$$

at $z_0 = 1/\omega_0$.

Proof. Let (σ_n) be the (N, p)-transform of the given power series at $1/\omega_0$. Then Lemma 3.1 implies that

$$\sum_{k=0}^{\infty} P_k \sigma_k w^k = \frac{1}{(1 - w/\omega_0)^N} \sum_{k=0}^{\infty} P_k w^k$$

for small values of w. Since $\lim_{n\to\infty} P_{n-1}/P_n = 1 - \alpha \neq 0$ (Lemma 2.1), an N-fold application of Lemma 4.1 implies the existence of

$$\lim_{n\to\infty}\frac{P_n\sigma_n}{P_n}=\lim_{n\to\infty}\sigma_n.\quad \Box$$

We can now obtain the desired characterization of summability points.

Theorem 4.3. Let (N, p) be a Nörlund method with $\lim_{n\to\infty} p_n/P_n = \alpha \neq 1$, $f(z) = \sum_{k=0}^{\infty} a_k z^k$ a power series with $0 < R < R_m$, and z_0 a point with $R/|1-\alpha| \leq |z_0| < R_m/|1-\alpha|$. Then (N, p) sums f at z_0 if and only if the following assertions hold:

- (i) if ζ is a pole of f with $|\zeta| < |(1 \alpha)z_0|$ of order $N \in \mathbb{N}$, then P has a zero at $\omega := \zeta/z_0$ of order $M \ge N$;
- (ii) if $\zeta_1, ..., \zeta_l$ are the poles of f on $|z| = |(1 \alpha)z_0|$ (if there are any) with orders $N_1, ..., N_l$, and if

$$g(z) = \sum_{k=0}^{\infty} b_k z^k = \sum_{i=1}^{l} \sum_{\nu=1}^{N_j} \frac{c_{\nu}^{(j)}}{(z - \zeta_j)^{\nu}}$$

is the sum of the principal parts of f at these poles, then (N, p) sums the power series g at z_0 .

Proof. Necessity: Assume that (N, p) sums f at z_0 . Then condition (i) follows from Theorem 3.2. To derive (ii) we write

$$f(z) = g(z) + \tilde{g}(z) + h(z)$$

$$= \sum_{j=1}^{l} \sum_{\nu=1}^{N_j} \frac{c_{\nu}^{(j)}}{(z - \zeta_j)^{\nu}} + \sum_{j=l+1}^{m} \sum_{\nu=1}^{N_j} \frac{c_{\nu}^{(j)}}{(z - \zeta_j)^{\nu}} + h(z),$$

where $\zeta_{l+1}, \ldots, \zeta_m$ are the poles of f in $|z| < |(1-\alpha)z_0|$ (if there are any) with orders N_{l+1}, \ldots, N_m , and \tilde{g} is the sum of the principal parts of f at these poles. Since

$$\frac{c_{\nu}^{(j)}}{(z-\zeta_i)^{\nu}} = \frac{(-1)^{\nu} c_{\nu}^{(j)}/\zeta_j^{\nu}}{(1-z/\zeta_i)^{\nu}},$$

(i) and Lemma 4.2 imply that (N, p) sums the power series of \tilde{g} about 0 at z_0 . Since h is holomorphic in $|z| \le |(1 - \alpha)z_0|$, Theorem A implies that

(N, p) also sums its power series about 0 at z_0 . Hence (N, p) sums the power series of $g = f - \tilde{g} - h$ about 0 at z_0 .

Sufficiency: Now assume that (i) and (ii) hold. As above we write $f = g + \tilde{g} + h$ and note that (ii), (i) with Lemma 4.2, and Theorem A imply that (N, p) sums the power series of g, \tilde{g} , and h, respectively, about 0 at the point z_0 . Hence the result follows. \square

Remark 4.4. The theorem solves the problem of characterization of summability points completely if f has no poles on $|z|=|(1-\alpha)z_0|$. In that case the zeros of P govern the summability behaviour. In the general case the problem is reduced to the question when (N,p) sums a linear combination of functions $1/(z-\zeta)^{\nu}$ with $|\zeta|=|(1-\alpha)z_0|$ and $\nu\in\mathbb{N}$ at the point z_0 . Also, the theorem leaves open the problem of characterizing summability points z_0 with $|z_0|=R_m/|1-\alpha|$.

5. Prescribing summability points

A Nörlund method (N, p) with $\lim_{n\to\infty} p_n/P_n = \alpha \neq 1$ sums any given power series (1) at most at finitely many points in $|z| > R/|1 - \alpha| + \varepsilon$, hence at most at countably many points in $|z| > R/|1 - \alpha|$. Now we ask if one can prescribe summability points z_0 there. If we assume that $|z_0| \neq R_m/|1 - \alpha|$, Corollary 3.5 and Theorem 3.8 tell us that we must have $|z_0| < R_m/|1 - \alpha|$ and that $(1 - \alpha)z_0$ is no pole of f. Under the given assumption these turn out to be the only restrictions. We first need:

Lemma 5.1. Let $T(w) = \sum_{k=0}^{\infty} T_k w^k$ be a polynomial with $T(0) \neq 0$ and $\lambda \in \mathbb{C}$, $\lambda \neq 0$, with $T(\lambda) \neq 0$. Then there exists a polynomial U such that the polynomial $\widetilde{T}(w) := \sum_{k=0}^{\infty} \widetilde{T}_k w^k := U(w)T(w)$ satisfies $\widetilde{T}(0) \neq 0$, $\widetilde{T}(\lambda) \neq 0$, and $\sum_{k=0}^{n} \widetilde{T}_k \lambda^k \neq 0$ for all $n \in \mathbb{N}_0$.

Proof. Consider the numbers $\tau_n:=\sum_{k=0}^n T_k\lambda^k$ $(n\in\mathbb{N}_0)$. If $\tau_n\neq 0$ for all n, then we may take $U(w)\equiv 1$. Else there are n_0 , $n_1\in\mathbb{N}_0$, $n_0< n_1$, such that $\tau_n\neq 0$ if $n\leq n_0$ and $n\geq n_1$. For $c\in\mathbb{C}$ put $\widetilde{T}(w):=\sum_{k=0}^\infty \widetilde{T}_kw^k:=(w-c)T(w)$. Then we have $\widetilde{\tau}_n:=\sum_{k=0}^n \widetilde{T}_k\lambda^k=\lambda\tau_{n-1}-c\tau_n$ for $n\in\mathbb{N}_0$ (with $\tau_{-1}:=0$). Hence we can choose c in such a way that $\widetilde{\tau}_n\neq 0$ for $n\leq n_0+1$ and $n\geq n_1$. Repeating this process if necessary we arrive at the desired polynomial. \square

Theorem 5.2. Let $f(z) = \sum_{k=0}^{\infty} a_k z^k$ be a power series with $0 < R < R_m$, and let $\alpha \ne 1$. Let S be a finite set of points in $R/|1-\alpha| \le |z| < R_m/|1-\alpha|$ such that $(1-\alpha)z$ is no pole of f for all $z \in S$. Then there exists a Nörlund method (N, p) with $\lim_{n\to\infty} p_n/P_n = \alpha$ that sums f at every point of S.

Proof. Since for $z \in S$ we have $|(1-\alpha)z| < R_m$, there are only finitely many poles ζ of f with $|\zeta| \le |(1-\alpha)z|$. Hence there exists a poynomial $T(w) = \sum_{k=0}^{\infty} T_k w^k$ with $T(0) \ne 0$ and $T(1-\alpha) \ne 0$ that has a zero at every point ω of the form $\omega = \zeta/z$ where $z \in S$ and ζ is a pole of f with $|\zeta| \le |(1-\alpha)z|$ and the order of the zero ω is not smaller than the order of the pole ζ . By Lemma 5.1 we can assume that in addition $\sum_{k=0}^{n} T_k (1-\alpha)^k \ne 0$ for all $n \in \mathbb{N}_0$.

We put

$$P(w) = \frac{1}{1 - w/(1 - \alpha)}T(w)$$

and claim that (N, p) is the desired Nörlund method.

First note that $P_n = \sum_{k=0}^n T_k (1-\alpha)^k/(1-\alpha)^n \neq 0$ for $n \in \mathbb{N}_0$ and that $\lim_{n\to\infty} P_{n-1}/P_n = 1-\alpha$, hence $\lim_{n\to\infty} p_n/P_n = \alpha$ by Lemma 2.1.

Now let $z_0 \in S$. We have to show that (N, p) sums f at z_0 . Applying Theorem 4.3 we need to show that conditions (i) and (ii) hold there. Condition (i) follows from the construction of T and P. As for (ii), let ζ be any pole of f with $|\zeta| = |(1 - \alpha)z_0|$ with order N. It now suffices to show that (N, p) sums the power series

$$g(z) = \sum_{k=0}^{\infty} b_k z^k = \frac{1}{(z - \zeta)^{\nu}}$$

at z_0 for any $\nu = 1, 2, ..., N$. If (σ_n) is the (N, p)-transform of g at z_0 , then by Lemma 3.1 we have for small values of w

$$P(w) \cdot \frac{1}{(z_0 w - \zeta)^{\nu}} = \sum_{k=0}^{\infty} P_k \sigma_k w^k.$$

We put $Q_n := P_n \sigma_n \ (n \in \mathbb{N}_0)$ and

$$\widetilde{Q}(w) := \sum_{k=0}^{\infty} \widetilde{Q}_k w^k := P(w) \cdot \frac{1 - w/(1 - \alpha)}{(z_0 w - \zeta)^{\nu}} = \frac{T(w)}{(z_0 w - \zeta)^{\nu}}.$$

By construction of T we see that \widetilde{Q} is a polynomial with $\widetilde{Q}(1-\alpha) \neq 0$. On the one hand we now have

$$\sum_{k=0}^{\infty} Q_k w^k = \sum_{k=0}^{\infty} P_k \sigma_k w^k = \frac{1}{1 - w/(1 - \alpha)} \widetilde{Q}(w),$$

so that

$$(1-\alpha)^{n}Q_{n} = (1-\alpha)^{n} \sum_{k=0}^{n} \frac{1}{(1-\alpha)^{n-k}} \widetilde{Q}_{k} = \sum_{k=0}^{n} \widetilde{Q}_{k} (1-\alpha)^{k} \to \widetilde{Q}(1-\alpha)$$

as $n \to \infty$. This shows that $Q_n \neq 0$ for large n and that $\lim_{n \to \infty} Q_{n-k}/Q_n = (1-\alpha)^k$ for every $k \in \mathbb{N}_0$. On the other hand we have

$$\sum_{k=0}^{\infty} P_k w^k = \sum_{k=0}^{\infty} Q_k w^k \cdot (z_0 w - \zeta)^{\nu},$$

hence

$$\frac{P_n}{Q_n} = \sum_{k=0}^{\nu} \frac{Q_{n-k}}{Q_n} {\nu \choose k} z_0^k (-\zeta)^{\nu-k}
\to \sum_{k=0}^{\nu} {\nu \choose k} ((1-\alpha)z_0)^k (-\zeta)^{\nu-k} = ((1-\alpha)z_0 - \zeta)^{\nu} \neq 0;$$

note that $(1-\alpha)z_0 \neq \zeta$ by assumption. This implies that

$$\sigma_n = \frac{Q_n}{P_n}$$

converges as $n \to \infty$, which had to be shown. \square

Remark 5.3. If $\alpha=0$, the Nörlund method (N,p) constructed in the above proof is even regular. For in that case we have p(w)=(1-w)P(w)=T(w), which is a polynomial, so that $\sup_n \sum_{\nu=0}^n |p_\nu|/|P_n| < \infty$ (see Section 2). For the function f(z)=1/(R-z) and $\alpha=1-R$ Theorem 5.2 was obtained in [2, Section 5].

6. REGULAR NÖRLUND METHODS

We briefly summarize here our main results for regular Nörlund methods (N, p). In that case we have $\lim_{n\to\infty} p_n/P_n = 0$ (see Section 2).

Let $f(z) = \sum_{k=0}^{\infty} a_k z^k$ be a power series with $0 \le R \le R_m \le \infty$, and let (N, p) be a regular Nörlund method. Then:

- If R = 0, then (N, p) sums f at no point of |z| > 0 (Theorem 3.2).

Now assume that R > 0. Then:

- (N, p) sums f compactly in |z| < R to the limit function f (Theorem A).
- (N, p) sums f at most at finitely many points in $R + \varepsilon < |z| \le R_m$ ($\varepsilon > 0$), hence at most at countably many points in $R < |z| \le R_m$ (Theorem 3.6). Moreover, if $|z| < R_m$, then a summation point is not a pole of f and the value of summation is f(z) (Theorem 3.8).
- (N, p) cannot sum f at any point of $|z| > R_m$; if P has no zeros in |w| < 1, then (N, p) does not sum f at any point of |z| > R (Corollary 3.5).

Conversely:

- If S is a finite set of points z with $R \le |z| < R_m$ that does not contain any pole of f, then there exists a regular Nörlund method (N, p) that sums f at every point of S (Theorem 5.2 and Remark 5.3).

REFERENCES

- 1. R. P. Agnew, Summability of power series, Amer. Math. Monthly 53 (1946), 251-259.
- 2. D. Borwein and A. Jakimovski, *Matrix transformations of power series*, Proc. Amer. Math. Soc. 122 (1994), 511-523.
- 3. G. Bouligand, Sur la comparaison de certains procédés de sommation des séries divergentes, Enseign. Math. 26 (1927), 15-27.
- 4. G. H. Hardy, Divergent series, Clarendon Press, Oxford, 1949.
- 5. F. Leja, Sur la sommation des séries entières par la méthode des moyennes, Bull. Sci. Math. 54 (1930), 239-245.

- 6. K. Stadtmüller, Summability of power series by non-regular Nörlund-methods, J. Approx. Theory 68 (1992), 33-44.
- 7. P. Vermes, The application of γ-matrices to Taylor series, Proc. Edinburgh Math. Soc. (2) 8 (1948), 43-49.

FACHBEREICH MATHEMATIK, FERNUNIVERSITÄT HAGEN, 58084 HAGEN, GERMANY E-mail address: KG.Grosse-Erdmann@FernUni-Hagen.de

Abteilung Mathematik III, Universität Ulm, 89069 Ulm, Germany